
Chapter 2

Program and OS Organization

This chapter begins by defining a very simple computer, with assembly
language instructions, a 16-bit address space, and memory-mapped pe-
ripherals.1 We will use this computer as an example as we talk about the
simplest operating systems.

We then examine simple methods of organizing and running a program on
this computer. We extend these methods to hide hardware dependencies,
insulate against changes in operating system details, and allow for program
loading and execution—at this point we have achieved a simple single-user
OS, similar in many ways to MSDOS 1.0.

After this we examine multi-processing and context switching, allowing
multiple programs to be running simultaneously. Finally we examine
what additional features are needed to protect the operating system from
the user, and users from each other. At this point we have achieved a
simplified version of a modern operating system; we compare it to Linux
and Windows.

1In other words, CPU operations only read or write internal registers and external (to
the CPU) memory. The memory address space is partitioned between normal random-access
memory and a section devoted to I/O devices, which respond to read and write requests to
particular addresses.

5

6 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Figure 2.1: Simple computer system architecture

2.1 A Simple Computer

We use a fictional 16-bit computer, shown in Figure 2.1. It has 8 general-
purpose registers, R0-R7, holding 16 bits each, as well as a stack pointer
(SP) and program counter (PC), and 64 KB (216) of memory which may
be accessed as 8-bit bytes or 16-bit words.

The examples below use the following instructions:

1. LOAD.B, LOAD.W - load a byte or a word from the indicated ad-
dress, which may be an absolute address (i.e. a number) or contained
in a register.

2. LOAD.I - load a constant value into a register. (called an “immediate”
value for unknown reasons)

3. STORE.B, STORE.W - store a byte or word from a register into
memory.

4. MOV - copy the contents of one register to another.
5. ADD, SUB - add or subtract one register (or a constant value) to or

from another register. Sets the Z flag if the result is zero.
6. CMP - compare a register to another register or a constant value.

Subtracts the second value from the register, sets the Z flag appro-
priately, and then throws away the result.

7. JMP - jump to the indicated address.
8. JMP_Z, JMP_NZ - jump if the Z flag is set (Z) or not set (NZ)
9. PUSH - push the 16-bit value in the indicated register onto the stack

10. POP - pop the 16-bit value top of the stack and place in the indicated

2.1. A SIMPLE COMPUTER 7

Figure 2.2: Frame buffer Figure 2.3: Keyboard
controller

register.
11. CALL - call a subroutine by pushing the return address (i.e. the

address of the next instruction) onto the stack and jumping to the
indicated address.

12. RET - return from subroutine by popping the return address from
the top of the stack and jumping to it.

In addition there are several input/output devices which are memory-
mapped—particular memory addresses correspond to registers in these
devices, rather than normal memory, and reads or writes to these addresses
are used to operate the device. These devices include:

1. frame buffer: A region of 1920 bytes, corresponding to 24 lines of
80 characters displayed on a video display. Writing a byte to one of
these locations causes the indicated character to be displayed at the
corresponding location on the screen, as shown in Figure 2.2.

2. keyboard controller: Two registers, one indicating whether a key
has been pressed, and the other the character corresponding to that
key, as shown in Figure 2.3.

This description is enough for our first examples; a full specification is
found in Appendix A.

Review Questions

2.1.1. I/O devices are pieces of software that are part of the operating
system: yes / no / sort of

2.1.2. I/O devices are part of memory: yes / no / sort of

8 CHAPTER 2. PROGRAM AND OS ORGANIZATION

;; note - frame buffer starts at 0xF000
str: "Hello World"

begin: LOAD.I R1 ← &str
LOAD.I R2 ← 11
LOAD.I R3 ← 0xF000

loop: LOAD.B R4 ← *(R1++)
STORE.B R4 → *(R3++)
SUB R2-1 → R2
JMP_NZ loop

done: JMP done

Figure 2.4: Simple ’Hello World’ program. LOAD.I loads an immediate (i.e.
constant) value, LOAD/STORE.B operates on a single byte instead of a 16-bit

word.

;; keyboard status = 0xF800, keycode = 0xF801

begin: LOAD.I R1 ← 0xF000 ;; frame buffer

loop: LOAD.B R2 ← *(0xF800)
TEST R2
JMP_Z loop

LOAD.B R2 ← *(0xF801) ;; get keystroke
STOR.B R2 → *(R1++) ;; copy to frame buffer

JMP loop

Figure 2.5: Copy keystrokes to screen

2.2 Program Organization

Our first program is seen in Figure 2.4. It performs a very simple task,
copying bytes from a compiled-in string to the frame buffer to display (of
course) “Hello World” and then finishing in a loop which does nothing.
(Although the reader is not expected to write programs in assembly lan-
guage, we assume that given the computer definition you should be able
to decipher simple examples such as this.)

In Figure 2.5 we see another simple program, which performs input as
well as output. In the three lines starting at the label loop it polls the
keyboard status register, waiting for a key to be pressed. It then reads the
keystroke value into R4 and stores it into the frame buffer. (Well, at least
for the first 1920 keystrokes. It will advance through the frame buffer line

2.3. A SIMPLE OPERATING SYSTEM INTERFACE 9

by line, ignoring carriage returns, and eventually “fall off” the end and
start scribbling over the rest of the I/O space. It is a very simple program.)

These two programs illustrate the simplest sort of software organization,
consisting only of the program itself, which handles every detail including
the hardware interface—not a difficult task for such a simple case. All
there is here is a program and some hardware, with nothing that we can
identify as an operating system; this approach might be appropriate for
the smallest microcontrollers. (i.e. with a few hundred bytes of program
memory and even less data memory)

2.3 A Simple Operating System Interface

Operating system - software that isn’t the program itself,
especially that required by a user or program to interact
with (i.e. operate) the computer.

For even slightly complex programs we are going to want to factor out
the hardware interface functionality. This would e.g. allow us to use a
single function for output to the frame buffer, which could be called from
different places in the program. Our next program, in Figure 2.6, copies
keystrokes from the keyboard to the frame buffer just like our previous
one. However, in this case we have separated out the keyboard and display
interface functions. With this we start to see the beginnings of an operating
system.

One goal of an operating system is to provide an abstract interface to the
hardware, serving several purposes. First, it allows a program developed
for one computer to be used on another one without extensive modification,
even if the hardware is not exactly the same. In addition, by separating
program-specific and hardware-specific code, it makes it easier for each
to be developed by someone who is expert in the corresponding area.2

Figure 2.6 might be termed a library operating system—it consists of
a series of functions which are linked with the application, creating a
single program which is loaded onto the hardware, frequently by being
programmed into read-only-memory and thus being present when the
computer is first turned on.

2Multiple levels of such separation are seen in modern computers, where BIOS and
hardware drivers are written by different organizations, each knowledgeable about their
own hardware, and hiding the details and complications of these devices behind an abstract
interface.

10 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Although this approach is useful for single-purpose devices, it has a key
shortcoming for general-purpose computers, in that changing the program
requires changing the entire contents of memory, requiring a mechanism
outside of the OS and program we have described so far. In some cases, in
fact, the only way to replace the program is to buy a new device—this may
in fact be reasonable for sufficiently “dumb” devices (e.g. a microwave
oven) but is clearly not going to be a popular way to get a new program
onto a computer.

2.4 Program Loading

Figure 2.7: Simple disk controller

In order to load programs we need a
device to load them from—in this case
a disk drive, which (unlike memory)
maintains its data while powered off,
and is typically much larger than mem-
ory, allowing it to hold multiple pro-
grams. Data on a disk drive is orga-
nized in 512-byte blocks, which are identified by block number, starting
with 0. In Figure 2.7 we see an extremely simple disk controller, which
allows a single block to be read from or written to the disk3. Operation is

loop: CALL getkey ;; return value in R0
PUSH R0 ;; push argument
CALL putchar
POP R0 ;; to balance stack
JMP loop

getkey: LOAD.B R4 ← *(0xF800) ;; key ready reg.
CMP R4, 0
JMP_Z getkey
LOAD.B R0 ← *(0xF801) ;; key code reg.
RET

putchar: LOAD.B R0 ← *(SP+2) ;; fetch arg into R0
LOAD.W R1 ← *(bufptr)
STOR.B R0 → *(R1) ;; *bufptr = R0
ADD R1+1 → R1
STOR.W R1 → bufptr ;; bufptr++
RET

bufptr: word 0xF000 ;; frame buffer pointer

Figure 2.6: Copy keystrokes with factored input/output

3For more information on disk drives, see Section 5.3 in Chapter 5.

2.4. PROGRAM LOADING 11

as follows:

To write 512 bytes to block B:

1. Write 256 16-byte words (e.g. copying from a buffer), one word at
a time, to the disk controller data register (0xF824)

2. Write block address (B) to block address register (0xF822)
3. Write command byte (2=WRITE) to cmd/status register (address

0xF820)
4. Poll cmd/status register; its value will change from 2 to 0 to indicate

transfer is complete.

To read from block B:

1. Write block address (B) to block address register (0xF822)
2. Write command byte (1=READ) to cmd/status register (0xF820)
3. Poll cmd/status register; value changes from 1 to 0 to indicate data

is ready to read
4. Read 256 16-bit words from data register (0xF824), typically into a

buffer in memory.

Figure 2.8: Split OS/program mem-
ory map

Now that we have a device to load pro-
grams from, the next step is to reserve
separate portions of the address space
for the OS and program, as shown in
Figure 2.8, so that we have a place in
memory to load those programs into.
The program links against the OS as
before, but this time the OS is located
in a separate memory region, so dif-
ferent programs (each compiled and
linked against this same instance of the
OS) may be loaded and run at different
times.

In Figure 2.9 we see pseudo-code4 for a
simple and user-hostile command-line
interface for this OS. The user specifies
a disk address and length; the OS loads
a program from the specified disk loca-
tion into a standard address in memory and transfers control to that address.
When the program is finished it returns control to the OS command line
loop, which is then able to load and run a different program.

4A generic term for anything that isn’t real program code, but which you are supposed
to understand anyway.

12 CHAPTER 2. PROGRAM AND OS ORGANIZATION

CMD_LOOP:
line = GET_LINE()
if line starts with "load":

blk,count = parse(line)
load_disk_sectors(_PROGRAM_BASE, blk, count)

if line starts with "go":
call _PROGRAM_BASE

jmp CMD_LOOP

Figure 2.9: Simple command line and program loader. Commands are
“load <start blk#> <count>” and “go”

There are a number of limitations to this operating system:

1. It’s not robust: if it doesn’t find the program you specified, it crashes.
2. If the program crashes, the entire system has to be reset (or power

cycled) before another program can be loaded.
3. The program may not run on another machine, or on the same

machine after an OS upgrade.

Problem 1 can be fixed fairly easily; for instance if we have a simple file
system, and specify the file by name, then if the file isn’t found the OS can
print an error message and ask for another command. Problem 2 may be
annoying, but it didn’t prevent MS-DOS from being the most widely-used
operating system for many years5. Problem 3 is an issue, though, although
first we have to describe why it is the case.

In particular, this operating system requires a certain amount of coordi-
nation between the OS and the program: (a) The OS must know at what
address the program expects to begin execution—e.g. the main() function
in a C program or its equivalent. This isn’t too much of an issue, as the
OS authors can just tell the application (and compiler) writers what to do.
(e.g. in our case execution begins at the very beginning of the program in
memory) And (b) the program, in turn, must have the correct addresses
for any of the OS functions (e.g. getkey in 2.6) which it invokes.

This is where the problem lies. The location of these entry points may
vary from machine to machine due to e.g. different memory sizes, and
will almost certainly change across versions of the OS as code is added
(or occasionally removed) from some of its functions.

To work around this we typically define a standard set of entry points
into the OS, or system calls, access these entry points via a table which

5In that case it typically wasn’t necessary to turn off the power - the low-level keyboard
driver would reset the machine when it saw CTL-ALT-DEL pressed at the same time.

2.4. PROGRAM LOADING 13

is placed in a fixed location in memory (e.g. at address 0), and give each
system call a specific place in this table.

One way of implementing this is for the program to access this table
directly; thus if getkey is entry 2, programs could invoke it via the call
syscall_table[2](args). Alternately, many CPUs define a TRAP or
INT6 instruction which may be used for this purpose. In this case, the
table will be located in a location known to the CPU (either fixed, as in
the original 8088 where the table began at address 0, or identified by a
control register) and TRAP N will cause the CPU to perform a function
call to the N th entry of this table.

We now have an interface which allows the OS to provide services to a
program via a fixed interface, allowing for binary compatibility across dif-
ferent hardware platforms and OS versions. If we use a TRAP instruction
for this interface, we have a system similar to MS-DOS, where OS and
application were each given separate parts of a single address space, and
access to generic as well as hardware-specific OS functions was performed
via the x86 INT instruction.

Review Questions

2.4.1. Does an operating system handle hardware details for a program?
yes/no/maybe

2.4.2. Does an operating system have a graphical user interface?
yes / no / maybe

2.4.3. Does an operating system allow the user to load and run programs?
yes / no / maybe

2.4.4. Does the system call table change every time a program is compiled?
yes / no

6the x86 “interrupt” instruction.

14 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Comparison to MS-DOS 1.0

Figure 2.10: MS-DOS layout

This simple OS is very similar to the
first version of MS-DOS. In MS-DOS
1.0, as seen in Figure 2.10, the operating
system is split into 4 parts: a hardware-
specific I/O system (BIOS), MS-DOS
itself, the resident part of the command
line interpreter, and additional “tran-
sient” parts of the command interpreter
which could be over-written by larger
programs (especially on machines with
16KB RAM) and re-loaded from floppy
disk after the program exited.

Similarities with the simple OS include:

1. separate OS and program memory regions
2. a system call table accessed via INT instruction
3. a command line which is part of the OS
4. a keyboard controller, frame buffer, and disk controller which are

much like the CPU-5600 versions

2.5 Device Virtualization

The GET_LINE and getkey operations just discussed are simple examples
of a powerful operating system concept—device virtualization. Rather
than requiring the programmer to write code specific to a particular hard-
ware implementation of a keyboard controller, the operating system pro-
vides simple “virtual devices” to the program, while the hardware details
are handled within the operating system. In particular, if these virtual
devices are sufficiently generic (e.g. supporting only read and write
operations) then the same program can read from the physical keyboard,
from a window system which sends keyboard data to the currently active
window, from a file, or from a network connection like ssh.

Implementing a generic I/O system like this is fairly straightforward, as
the set of I/O operations (open, close, read, write, etc.) is basically an
interface, while each particular device (e.g. keyboard, disk file, etc.) can
be thought of as a class implementing that interface. In practice this is
done by providing the program with a handle or descriptor which maps to
the actual I/O object within the OS, and then implementing system calls

2.6. ADDRESS SPACE AND PROGRAM LOADING 15

struct f_op {
size_t (*read) (struct file *, char *, size_t);
size_t (*write) (struct file *, char *, size_t);
...

};

/* ’current’ points to current process structure
*/
size_t sys_read(int fd, char *buf, size_t count) {

struct file *file = current->files[fd];
return file->f_op->read(file, buf, count);

}

Figure 2.11: Simplified code for read system call in Linux

such as read and write by mapping the handle to the object, and then
invoking the appropriate method.

In Linux a file descriptor is an integer, used to index into a table of files
opened by the current process; a simplified version of the read system call
is seen in the example in Listing 2.11.7 The listing is somewhat simplified—
the actual code performs a few levels of indirection, some locking, and
a bounds check while looking up the ’struct file’ corresponding to ’fd’,
and also handles the offset within the file. The actual code is not that
complex, however, as the complicated parts are all in the file system or
device-specific read methods.

2.6 Address Space and Program Loading

Typically program address space is divided into the following parts: code
or machine-language instructions (for some reason typically called “text”),
initialized data, consisting of read-only and read-write initialized data,
initialized-zero data, called “BSS” for obscure historical reasons, heap or
dynamically allocated memory, and stack.

In Figure 2.12 we see the address space organization which has evolved
for arranging these areas for CPUs on which the stack grows “down”—i.e.
more recently pushed data is stored in lower-numbered addresses. (this
is by far the most common arrangement) In this arrangement the fixed-
sized portions of the address space are at the bottom, and the heap grows
“up” from there, while the stack grows “down” from the highest available

7Like many other operating systems, Linux is written in C, which lacks direct support for
abstract interfaces and data types; the actual implementation relies on a system of structures
of function pointers which is similar to how the compiler implements virtual methods in
C++.

16 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Figure 2.12: Typical process memory
map: code, data, and heap at bottom;

stack at top.

Figure 2.13: Awkward process mem-
ory map, with fixed-sized stack alloca-

tion.

address. Assuming that the memory available is contiguous, this gives
the program maximum flexibility—it can use most of the memory for
dynamically-allocated heap, or for the stack, as it chooses. In contrast, an
organization such as Figure 2.13 would require a fixed allocation of the
two regions to be made when the program is loaded by the OS, adding
complexity while reducing flexibility. (Note that since the heap is software-
managed it can grow in whatever direction we want; however on most
CPUs the direction of stack growth is fixed.)

An additional goal of an address layout is to be able to accomodate different
amounts of available memory. As an example, early microcomputers like
the first IBM PCs might have between 16 KB and 64 KB of memory; we
would like the same program to be able to run on machines with more or
less memory, with the additional memory on the larger machine available
for heap or stack. This was typically done by starting memory at address
0, so that a 16 KB machine would have available memory address 0x0000
through 0x3FFF, while a 32 K machine would be able to use 0x0000
through 0x7FFF. Code and fixed data would be located starting at a pre-
defined offset near address 0, with stack and heap located above these
sections, at addresses which might vary from machine to machine and
program to program. This would ensure that small programs would be
placed in low addresses, so that they would be guaranteed to run on low-
memory machines, while the variability of stack and heap addresses was
not a significant issue because the compiler does not need to generate

2.7. INTERRUPTS 17

Index Description DOS name
0 divide by zero
1 single step
2 non-maskable
3 debug break
4 debug break on overflow
5 -unused-
6 invalid instr.
7 -unused-
8 system timer IRQ0
9 keyboard input IRQ1
10 line printer 2 IRQ2, LPT2
11 serial port 2 IRQ3, COM2
12 serial port 1 IRQ4, COM1
13 hard disk IRQ5
14 floppy disk IRQ6
15 line printer 1 IRQ7, LPT1
16- software-defined
255 interrupts

Table 2.1: 8086/8088 interrupts as defined by the IBM PC hardware.

direct references to them.

2.7 Interrupts

So far all the code that we have looked at has been synchronous, proceeding
as a series of function calls reachable from some original point at which
execution started. This is a good model for programs, but not always for
operating systems, which may need to react to arbitrary asynchronous
events. (Consider for instance trying to stop a program with control-C, if
this only took effect when the program stopped and checked for it.)

To handle asynchronous I/O events, CPUs provide an interrupt mechanism.
In response to a signal from an I/O device the CPU executes an interrupt
handler function, returning to its current execution when the handler is
done. The CPU essentially performs a forced function call, saving the
address of the next instruction on the stack and jumping to the interrupt
handler; the difference is that instead of doing this in response to a CALL
instruction, it does it at some arbitrary time (but between two instructions)
when the interrupt signal is asserted8.

8This makes programming interrupt handlers quite tricky. Normally the compiler saves
many register values before calling a function, and restores them afterwards; however an
interrupt can occur anytime, and if it accidentally forgets to save a register and then modifies
it, it will appear to the main program as if the register value changed spontaneously. This
isn’t good.

18 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Most CPUs have several interrupt inputs; these correspond to an interrupt
vector table in memory, either at a fixed location or identified by a special
register, giving the addresses of the corresponding interrupt handlers.
As an example, in Table 2.1 we see the corresponding table for an 8088
CPU as found in the original IBM PC, which provides handler addresses
for external hardware interrupts as well as exceptions which halt normal
program execution, such as dividing by zero or attempting to execute an
illegal instruction.

The simplest interrupt-generating device is a timer, which does nothing
except generate an interrupt at a periodic interval. In Listing 2.14 we see
why it is called a timer—one of its most common uses is to keep track of
time.

extern int time_in_ticks;
timer_interrupt_handler() {

time_in_ticks++;
}

Figure 2.14: Simple timer interrupt handler

Another simple use for interrupts is for notification of keyboard input.
Besides being useful for a “cancel” command like control-C, this is also
very useful for type-ahead. On slower computers (e.g. the original IBM
PC executed less than half a million instructions per second) a fast typist
can hit multiple keys while a program is busy. A simple keyboard interface
only holds one keystroke, causing additional ones to be lost. By using the
keyboard interrupt, as shown in Figure 2.15, the operating system can read
these keystrokes and save them, making them available to the program the
next time it checks for input.

Review Questions

2.7.1. Hardware interrupts occur when particular instructions are exe-
cuted: yes / no

A question for the reader - how would you change the one-key type-
ahead buffer in Figure 2.15 to buffer a larger number of keystrokes?

2.8. CONTEXT SWITCHING 19

int lastkey = -1; /* invalid keystroke */
kbd_interrupt() {

lastkey = kbd_code;
}
int getkey() {

while (lastkey == -1) {
/* loop */

}
int tmp = lastkey;
lastkey = -1;
return tmp;

}

Figure 2.15: Single-key keyboard type-ahead buffer

2.7.2. A device (e.g. the keyboard controller) uses interrupts to send data
to the CPU: yes / no

2.7.3. Interrupts allow a program to do multiple things at once: yes / sort
of / no

2.8 Context Switching

Interrupt-driven type-ahead, as described above, represents a simple form
of multi-processing, or handling multiple parallel operations on the same
CPU. Full multi-processing, however, as found on modern operating sys-
tems, involves parallel execution of full programs, rather than merely
interleaving a single program with specific bits of operating system func-
tionality.

Our simple OS cannot do this, nor can MS-DOS (which it closely re-
sembles), but it is a straightforward extension to do so even on limited
hardware. To do this on a single CPU machine we need a mechanism for
saving the state of a process—a running program—and restoring it after
another process has taken its turn.

To do this we take advantage of the way in which program state is stored on
the stack. This may be seen in Figure 2.16, where we see the stack frame
generated by a call to function g() with arguments and local variables.

By holding arguments, return addresses, and local variables, the stack
essentially captures all the private state of a running computation. If we
were to save the stack of a running process, go off and do something
else—taking care to use a different stack—and then switch stacks again to
return to the first process, no one would be the wiser except for any delay
incurred.

20 CHAPTER 2. PROGRAM AND OS ORGANIZATION

f() {
g(4, 5);

}
g(int n, m) {

int a = 10;
...

}
SP→

5 (m)
4 (n)

return addr
10 (a)

Figure 2.16: Subroutine call stack shown when in g(), called from f(), showing
relationship between arguments, return address, and local variables.

sleep(time_t t) {
end = now() + t;
while (now() < end)

do nothing;
}

sleep(time_t t) {
... switch() →

... return ←
}

[process A]

→
do something else
... for t seconds
← then return

[process B]

Figure 2.17: Alternate methods of implementing sleep().

In fact, in Figure 2.17 we see two implementations of the sleep() func-
tion; the first busy-waits until the specified time has passed, while the
second uses some mechanism to switch to another program for a while,
and then returns when the interval is up. The particular mechanism used
to switch from one process to another is simple but subtle: we save the
processor registers by pushing them to the stack, and then save the value
of the stack pointer into another location in memory. (This is commonly a
location in a process control block, an object which represents the state of
a process when another one is executing, and can be put on wait lists and
otherwise manipulated.) We can then switch to another process by loading
the stack pointer value for that second process (e.g. from its location in its
process control block), restoring registers from the stack, and returning.

The flow of control involved in such a context switch is difficult to get
used to, because the context switch itself looks like a simple function call,
but behaves in a radically different way. In your previous classes you will
have learned to think about functions as abstract operations, returning by
definition to the same place where they were invoked. In a context switch,
however, control enters the function from one location, and after a few
simple instructions returns to an entirely different location.

We see different representations of this in Figures 2.18 and 2.19. The

2.8. CONTEXT SWITCHING 21

context switch code is shown first: it saves registers to process 1’s stack
and saves the value of the stack pointer, then loads process 2’s stack pointer,
pops saved registers, and returns. Note that the second half of the function
is referring to an entirely different stack than the first half, so the registers
and return address popped from the stack are different from the ones saved
in the first half of the function.

A context switch enters a process or
thread by returning from a function
call, and leaves the process by
calling into the switch function.

In addition we see two different
visualizations of the flow of con-
trol during context switch. In each
case control enters switch via a
call from one process (or thread of
control) but exits by returning to a
different process.

This is a curious property of con-
text switching: we can only switch to a process if we have switched from
it at some point in the past. This results in a chicken-and-egg9 sort of
problem—how do we start a process in the first place? This is done via
manipulating the stack “by hand” in the process creation code, making
it look like a previous call was made to switch, with a return address
pointing to the beginning of the code to be executed, forming what is
called a trampoline which “bounces” back to the desired location.

In Figure 2.21 we see a thread being started so that it begins execution
with the first instruction of function main(). Imagine that just before the
beginning of main() there had been a call to context_switch; when
that call returns execution will begin at address main. To start a thread

switch_1_2:
PUSH R0 # save registers
PUSH R1
...
STOR SP -> proc1_sp
LOAD SP <- proc2_sp
...
POP R1
POP R0 # restore them
RET

thread 1

switch()

thread 2

call

return

return

call

Figure 2.18: Different ways of looking at a context switch from Process 1 to
Process 2.

9An English idiom referring to the rhetorical question “Which came first, the chicken or
the egg?”

switch

22 CHAPTER 2. PROGRAM AND OS ORGANIZATION

process

 1

process

2

process

3

process

4

call return context
switch _start() {

/* prepare argc, argv */
int val = main(argc, argv);
exit(val);
/* Not reached */

}

Figure 2.19: Another way of looking at
context switch control flow—processes
call into switch which then returns to

another process.

Figure 2.20: Simplified C run-time li-
brary (crt0.o) - invoke main, and then
call exit to terminate process, guaran-
teeing no return from the true start func-

tion.

which will begin at main, then, we just fake this call stack; when we switch
to the thread the first time, context_switch will then return to location
main, where execution will begin.

return addr

main()
{
 ….
}

saved stack
pointer

return addr

main()
{
 ….
}

saved stack
pointer

Figure 2.21: “Trampoline” return stack
pointing to the beginning of the function

to be executed (main)

A function is entered via CALL and
exited via RET; similarly since we
enter a process via RET, we exit it
via CALL. In particular, we define a
function (typically called exit())
which makes sure that the process
will never be switched to again.
(e.g. it is removed from any lists of
processes to be run, its resources
are freed, etc.) Note that some pro-
gramming languages (e.g. C) al-
low process execution to be termi-
nated by returning from the main
function; this is done by calling main from the “real” start function, as
shown in Figure 2.20.

Review Questions

2.8.1. Which of the following are stored on the stack?
a) Function arguments

2.9. ADVANCED CONTEXT SWITCHING 23

b) Return addresses
c) Global variables
d) Local variables

2.8.2. The RET (return) instruction: a) Returns to the instruction immedi-
ately after CALL b) Returns to the address on the top of the stack.

2.8.3. When context switching from process A to process B, what CPU
instruction actually jumps to code in B? (i.e. sets the PC to an
address that is part of B’s execution) : CALL / JMP / RET

2.9 Advanced Context Switching

Figure 2.22: Simple memory-mapped 4-
port serial interface

So far we have considered the
case where switching between
processes is initiated by an ex-
plicit call into the OS from the
currently running process. But
an interrupt is essentially a func-
tion call from the current pro-
cess into a part of the operating
system—the interrupt handler—
and we can in fact context switch
to another process from within
the interrupt handler function.10 A simple example is the case of the timer
interrupt, which can easily be used to implement time slicing between
multiple processes. If the timer device was set to interrupt every e.g.
20 ms, and its interrupt handler did nothing except context switch to the
next in a circular list of processes, then these processes would share the
CPU in 20 ms slices.

Scheduling

Context switching is the mechanism used by the operating system to switch
from one running process to another; scheduling refers to the decision
the operating system must make as to which process to switch to next.
Scheduling is not covered in much detail in this version of the text.

24 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Figure 2.23: Old (c. 1975?) multi-user
computer system with 4 serial termi-

nals.

Figure 2.24: Possible memory address
layout for 4 processes plus operating

system.

Multi-User Computer System
We now have all the software mechanisms needed to construct a multi-
user computer system.Instead of a keyboard and video display we will
use serial ports connected to external terminals; the system is shown in
Figure 2.23 and the details of the memory-mapped interface to the serial
ports are shown in Figure 2.22. When the user types a character on their
terminal it will be transmitted over the serial line and received by the serial
port, which will set the input status to 1 and put the received character in
the input register. (just like the keyboard controller)11

To output data to the user a character is written to the output register,
which is then transmitted over the serial line and displayed to the user by

10Depending on the CPU there may be a few differences in stack layout between an
interrupt and a function call, but these can be patched up in software.

11It may seem to a modern reader that such a terminal would be as complex as a computer;
however the earliest terminals (“teletypewriters”) were almost entirely mechanical.

2.9. ADVANCED CONTEXT SWITCHING 25

the terminal. It takes some amount of time to transmit a character; during
this time the output status register is set to 1, and a new character should
not be written until it returns to zero. Again similar to the keyboard con-
troller we can also perform interrupt-driven I/O; in this case one interrupt
indicates when a character has been received, while a second indicates
that a character has finished being transmitted and we may send the next
character.

Review Questions

2.9.1. Multiple copies of the same program:

1 Can share their entire memory space, since they have the same
code and variables: yes/no

2 Can share their program code, but not the data memory holding
their variables: yes/no

3 Can’t share their code memory, because the two processes would
interfere with each other as they try to execute the same instruc-
tions: yes/no

I/O-driven Context Switching

Now we know how to switch between programs, but when should we do
it? We see one possible answer in Figure 2.25—switching on user input.
Many simple programs (e.g. the shell, editors, etc.) consist of a user input
loop: the program waits for input from the user, processes it, displays any
resulting output, and then waits for user input again. Most of the time the
program is idle, waiting for input; we take advantage of this by modifying
the OS input routine to switch to another process when there is no input
ready.

The code in Figure 2.25 will not switch to another process until the current
process explicitly requests more input. For input which requires very little
processing (e.g. an editor updating the screen) this is fine. However, if the
program were to perform large amounts of computation before its next
input request, then the other users might not be able to get a response
for a long period of time. We can address this problem using interrupts:
(1) When data is received for a program which is waiting for input, we
switch to that program, allowing it to respond immediately. (2) When
the timer interrupt fires we switch from the currently running process to
another running process. (A “running” process is one that is not waiting
for input—i.e. one that was previously suspended by a timer interrupt.)

26 CHAPTER 2. PROGRAM AND OS ORGANIZATION

2.10 Address Spaces for Multiple Processes

In Figure 2.24 we see a possible address space layout for our 4-user system,
with four programs—one per terminal—each receiving about a quarter of
the available memory. There is one significant problem, though: How do
we get programs to run in these different memory regions?

As mentioned earlier in this chapter, the location at which a program is
placed in memory is important, because there are many locations in a
typical program where the address of a portion of the program is needed
as part of an instruction. (e.g. for a subroutine call: on many CPUs,
a function call f() would be compiled to the instruction CALL f, with
the address of f forming part of the instruction.) If a program has been
compiled to start at a specific location in memory12 then it typically will
not work if loaded into a different location.

There are a number of different ways to handle this problem:

• fixed-address compilation: each program to be run on the system
could be compiled multiple times, once for each possible starting
point, and then the appropriate one loaded when a user runs a

terminal is {
queue unclaimed_keystrokes;
process *waiting_process;
...

};
process *current;
queue of (process*) active;

GETKEY(terminal *term):
if (term->unclaimed_input is empty)

term->waiting_process = current
switch_to(active.pop_head())

return term->unclaimed_input.pop_head()

interrupt:
term->unclaimed_input.push_tail(key)
if (term->waiting_process)

active.push_tail(term->waiting_process)
term->waiting_process = NULL

Figure 2.25: Context switching on GETKEY—while a process is waiting for input
we take it off of the list of active processes; when input is received we wake the

process waiting for it.

12E.g. 32-bit Linux programs are typically compiled to start at address 0x8048000.

2.10. ADDRESS SPACES FOR MULTIPLE PROCESSES 27

200 CALL 500
...

500 ...

(a)

200 CALL PC+300
...

500 ...

(b)

Figure 2.26: Example of absolute and PC-relative addressing, both loaded at
address 200

program. This seems like a bad idea, as it is inflexible and complex
in many different ways. (e.g. it fixes the locations of the partitions,
regardless of the total system memory size, or the size of a program,
or how many programs we might wish to run at once) The only
place I’ve seen this approach used is in certain embedded systems,
where you may have multiple separate programs running at once but
they are all compiled together as part of a single firmware version.

• position-independent code: here we ensure that programs are com-
piled in a way that makes them insensitive to their starting address,
by using what is called PC-relative addressing. This is illustrated in
Figure 2.26: rather than using an absolute address (e.g. 500 in the
figure) for a function call, we use an alternate instruction which indi-
cates an offset from the current PC. Unfortunately this is frequently
inefficient; for instance 32-bit Intel architecture CPUs are able to
efficiently perform PC-relative CALL and JMP instructions, but
require multiple instructions to perform a PC-relative data access.
(this was fixed in the 64-bit extensions)

• load-time fixup: Here we defer the final determination of addresses
until the program is actually loaded into memory. The program file,
or executable, will thus contain not only the code and data to be
loaded into memory, but a list of locations which must be modified
according to the address at which the program is placed in memory.
Thus in Figure 2.26, this list would indicate how the target of the
CALL instruction should be calculated.13

• hardware support: By far the most popular way of sharing system
memory between multiple running programs is by the use of hard-
ware address translation; such hardware support is required to run
modern general-purpose operating systems such as Linux, Mac OS
X, or Windows. The basic idea is illustrated in Figure 2.27: the
CPU uses virtual addresses for instruction fetches or data loads and
stores, which are then translated by an MMU (Memory Manage-

13This approach is used on uClinux, a modified version of Linux which runs on low-end
microcontrollers lacking virtual memory hardware.

28 CHAPTER 2. PROGRAM AND OS ORGANIZATION

 CPU

R7

R0

Z

SP
PC

Virtual
Address

M
M
U

Physical
Address

Memory

Figure 2.27: Virtual-to-physical address translation. All addresses in the CPU are
virtual, and are translated to physical addresses by the MMU (Memory Manage-

ment Unit) before being used to access physical memory.

ment Unit) to physical addresses (i.e. the actual address of a byte
within a specific memory chip) for each memory operation.

2.11 Memory Protection and Translation

Hardware-supported address translation and memory protection (e.g. see
Figure 2.27) is used on all well-known general-purpose operating systems
today (e.g. Linux, OSX, Windows, and various server operating systems)
as well as many others (e.g. the OSes used on most cell phones)14. Address
translation is used for the following reasons:

• Flexible sharing of memory between processes. As seen above,
sharing a single physical address space between a set of processes
that changes over time is complicated without hardware support.
Address translation allows programs to be compiled against a stan-
dard virtual address space layout, which is then mapped to available
memory when the program is loaded into memory.

• Security. On a multi-user computer there are obvious reasons for
preventing one user from accessing another’s data; to accomplish
this it is necessary to prevent “normal” processes from directly
accessing memory used by another process or by the operating
system. (even if the system is only used by one user at at time, the
operating system must be protected if it is to be relied on to prevent
access by one user to another user’s files.)

• Robustness. If a program is allowed to write to any address in the
system, then a bug in that program may cause the entire system to

14Address translation costs both money and power to add to a CPU; thus for instance the
iPod Touch has a CPU with address translation, while the iPod Nano doesn’t.

2.11. MEMORY PROTECTION AND TRANSLATION 29

crash, e.g. by corrupting the operating system.15 If a process is
constrained to only modifying memory that it has been allocated,
then the same bug would cause only that process to crash, after
which it may be restarted.

It is possible to ensure this degree of protection with software mechanisms
under certain very limited circumstances, by e.g. restricting user processes
to only use Java bytecodes rather than direct program execution.16 In the
normal case however, where an application is allowed to directly execute
most CPU instructions at full speed, hardware support is needed to prevent
a process from making unauthorized memory reads and writes. This
mechanism needs to be reconfigured by the operating system on every
context switch, to apply the correct set of permissions to the running
process, yet programs themselves must be prevented from modifying the
configuration to bypass permission checking.

How can we allow the OS to modify memory protection, while preventing
user programs from doing so and subverting memory protection? This
is done by introducing a processor state: when the processor is running
in user mode it is not allowed to modify memory mapping configuration,
while when running in supervisor (also called kernel) mode it may do so.
The code of a normal application executes in user mode, while the operat-
ing system kernel17 runs in supervisor mode. We next need a mechanism
for safely entering supervisor mode when either (a) an application invokes
a system call, or (b) a hardware interrupt occurs, and then switching back
to user mode when returning.

A question for the reader - what
might happen if unprivileged
programs were able to modify the
exception table?

This is typically done via the in-
terrupt or exception mechanism,
which (as described earlier in this
chapter) causes a forced function
call in response to certain events,to
an address specified in a exception
vector or exception table. If we
use an exception for invoking sys-
tem calls, and the CPU always switches to supervisor mode when handling
exceptions, then all operating system code will run in supervisor mode,
and a special instruction may be used to return back to user mode when a
system operation is complete. As long as the exception table is protected

15This happened frequently in MS-DOS, which had no memory protection.
16For instance, this approach is used by the Inferno operating system from Bell Labs, as

well as several Java-based research operating systems.
17The core of the operating system, which does not run as a process—i.e. ignoring

system services which run as normal processes.

30 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Bound

>?
Y

fault

+

Virtual
Address

Physical
Address

Base

Bound
Base

AmaxAmax

A0A0
Virtual

P
h
y
s
I
c
a
l

Physical

Bound

>?
Y

fault

+

Virtual
Address

Physical
Address

Base

Bound
Base

AmaxAmax

A0A0
Virtual

P
h
y
s
I
c
a
l

Physical

(a) (b)

Figure 2.28: Base and bounds address translation, depicting address calculation
(left) and virtual to physical memory map correspondence (right).

from user-space modification, this hardware mechanism provides the a
basis on which a secure operating system may be built.

The simplest such address translation mechanism is known as base and
bounds registers, as illustrated in Figure 2.28a. A virtual address is first
checked to ensure that it lies between 0 and a limit specified in the bounds
register; if this check fails, an exception is raised and the operating system
can terminate the process. Otherwise an offset (from the base register) is
added to the virtual address, giving the resulting physical address. In this
way a standard virtual address space (addresses 0 through the process size)
is mapped onto an arbitrary (but contiguous) range of physical memory,
as shown in Figure 2.28b.

There are a few complications in getting this to work with supervisor mode,
as it needs to be able to access OS data structures which are (a) inaccessible
to user-space code, and (b) at the same location in memory no matter which
user-space base register value is currently being used. Although several
techniques have been used, the simplest one is to ignore base and bounds
registers in supervisor mode, so that the operating system uses physical
addresses, giving access to all of memory, while user processes execute in
separate translated address spaces18.

The switch from user to supervisor memory space (e.g. switching from
translating via the base+bounds registers to using direct addressing) is

18This also makes it easier for the OS to change base+bounds registers when switching
between processes, as it will have no effect on supervisor-mode address translation. Chang-
ing the mapping of the memory region being currently executed—something which most
operating systems have to do very early in the boot process—is a very tricky thing.

2.11. MEMORY PROTECTION AND TRANSLATION 31

done automatically by the hardware on any trap or interrupt. The operating
system is then free to change the values in the (user) base and bounds
registers to reflect the address space of the process it is switching to.

32 CHAPTER 2. PROGRAM AND OS ORGANIZATION

2.12 Putting it all together

In the introduction we saw the example of a simple command (ls) being
executed in Linux. Many of the details of its operation were covered in
this chapter.

Hardware: In our example, the keyboard controller was for an old-
fashioned PS/2 keyboard, and the text display used was the simplest text
mode supported by PC hardware, normally only used by some BIOSes.
These are almost identical to the corresponding I/O devices in our hypo-
thetical computer—they’re located at different addresses, and support a
few extra functions (e.g. flashing letters, key-up and key-down events, and
keyboard output to e.g. turn on the caps-lock light), but otherwise are the
same.

Code: To explain the operating system code we’ll use the 64-bit Linux
kernel version 4.6.0, because that’s what I have handy. (you can browse
and search the source code at http://elixir.free-electrons.com/
linux/v4.6/source) If I use the kernel debugger to put a breakpoint
on the actual TTY read function (n_tty_read) we get the following
backtrace, which we will refer to in explaining input operation:

(gdb) backtrace
#0 n_tty_read (tty=0xffff88003a99fc00, file=0xffff880036b3e900,

buf=0x7ffcff243a77 "", nr=1) at drivers/tty/n_tty.c:2123
#1 0xffffffff814d2792 in tty_read (file=0xffff880036b3e900, buf=<optimized

out>, count=1, ppos=<optimized out>) at drivers/tty/tty_io.c:1082
#2 0xffffffff8121a197 in __vfs_read (file=0xffff88003a99fc00, buf=<optimized

out>, count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:473
#3 0xffffffff8121b236 in vfs_read (file=0xffff880036b3e900, buf=0x7ffcff243a77

"", count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:495
#4 0xffffffff8121c725 in SYSC_read (count=<optimized out>, buf=<optimized out>,

fd=<optimized out>) at fs/read_write.c:610
#5 SyS_read (fd=<optimized out>, buf=140724589050487, count=1) at

fs/read_write.c:603
#6 0xffffffff81798a76 in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:207
#7 0x0000000000000001 in irq_stack_union ()
#8 0x0000000000000000 in ?? ()

System calls: The Linux command line is a separate program, the shell,
running in its own process, which invokes the read system call by exe-
cuting the INT0x80 instructure with the system call number (SYS_READ
= 3) in the EAX register, the file descriptor (stdin = 0) in EBX, a buffer
pointer in ECX, and the buffer length in EDX - see ’man 2 read’ for a full
description of the system call semantics. (note that this is how it works
for 32-bit mode; it’s slightly different and more complicated for 64-bit.)

The entry_SYSCALL_64 function is the trap handler; it saves all sorts of
registers, checks that it’s a legal system call number, and then calls the

http://elixir.free-electrons.com/linux/v4.6/source
http://elixir.free-electrons.com/linux/v4.6/source
n_tty_read
INT 0x80
SYS_READ
EAX
entry_SYSCALL_64

2.12. PUTTING IT ALL TOGETHER 33

appropriate entry in the system call table. (since it needs to save registers
and perform other machine-level functions it is one of the few kernel
functions written in machine language)

#6 0xffffffff81798a76 in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:207
207 call *sys_call_table(, %rax, 8)

Note that the operating system
kernel is almost entirely composed
of exception handlers, which run in
response to deliberate traps from
user applications (system calls) or
accidental ones (e.g. memory
access faults), as well as interrupts
from I/O devices and timers. This
means that when a system is idle it
is not actually executing code in the
operating system kernel itself;
instead a special idle process with
lowest priority executes when no
other work is available.

I/O virtualization: Linux file de-
scriptors are small integers which
index into a per-process array of
pointers to internal kernel file
structures. File descriptor 0 is stan-
dard input, and 1 is standard out-
put. The pointer to the current
process structure is called (unsur-
prisingly) current; we can look
into its file table and see that en-
tries 0 and 1 point to the same file
structure (ending in 3e900) passed
to n_tty_read in the stack trace
above:

(gdb) p current->files.fdtab.fd[0]@2
$9 = {0xffff880036b3e900, 0xffff880036b3e900}

The SYSC_read function looks up this structure (returning an error for
bad file descriptor numbers); vfs_read does a few more checks, and
then calls __vfs_read which forwards to the "read" method from the file
operations table in the file structure:
#2 0xffffffff8121a197 in __vfs_read (file=0xffff88003a99fc00, buf=<optimized

out>, count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:473
473 return file->f_op->read(file, buf, count, pos);

When the file was originally opened, this operations table was set to point
to the read and write operations for the TTY driver, which is responsible
for keyboard input and text-mode screen output:
(gdb) p file->f_op
$13 = (const struct file_operations *) 0xffffffff81872fa0 <tty_fops>
(gdb) p *file->f_op
$14 = {owner = 0x0, llseek = 0xffffffff81219ff0 <no_llseek>,
read = 0xffffffff814d2700 <tty_read>, write = 0xffffffff814d27f0 <tty_write>,
...

Context switching: In n_tty_read it adds the current process to a wait
queue, then checks to see if there is any input (or error conditions or lots
of other reasons why it might return early) and if none, it goes to sleep:

current
n_tty_read
SYSC_read
vfs_read
__vfs_read
n_tty_read

34 CHAPTER 2. PROGRAM AND OS ORGANIZATION

2166 add_wait_queue(&tty->read_wait, &wait);
...

2188 if (!input_available_p(tty, 0)) {
...

2207 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE,
2208 timeout);

Here wait_woken sets a few things and then calls schedule_timeout,
which sets a timer and then calls schedule, the central context switch
function, which picks the next runnable process and switches to it.

The interrupt which wakes it up is much more convoluted, as the actual
interrupt handler schedules a “deferred work” callback which does the
real work. (why? For several reasons, one of which is that you can block
in a deferred work handler while interrupts have to return immediately.)
Here are selected lines from the interrupt backtrace:

#0 tty_schedule_flip (port=<optimized out>) at drivers/tty/tty_buffer.c:406
#1 tty_flip_buffer_push (port=0xffff88003e088000)

at drivers/tty/tty_buffer.c:558
#2 0xffffffff814dc8ae in tty_schedule_flip () at drivers/tty/tty_buffer.c:559
#3 0xffffffff814e490e in put_queue (ch=<optimized out>, vc=<optimized out>)

at drivers/tty/vt/keyboard.c:306
...
#8 0xffffffff814e5c11 in kbd_keycode (hw_raw=<optimized out>, down=<optimized

out>, keycode=<optimized out>) at drivers/tty/vt/keyboard.c:1457
#9 kbd_event (handle=<optimized out>, event_type=<optimized out>,

event_code=<optimized out>, value=2) at drivers/tty/vt/keyboard.c:1475
...
#16 atkbd_interrupt (serio=0xffff88003684e800, data=<optimized out>,

flags=<optimized out>) at drivers/input/keyboard/atkbd.c:512
#17 0xffffffff8162fdc6 in serio_interrupt (serio=0xffff88003684e800,

data=57 ’9’, dfl=0) at drivers/input/serio/serio.c:1006
#18 0xffffffff81630e72 in i8042_interrupt (irq=<optimized out>,

dev_id=<optimized out>) at drivers/input/serio/i8042.c:548
...
#23 handle_irq (desc=<optimized out>, regs=<optimized out>)

at arch/x86/kernel/irq_64.c:78
#24 0xffffffff8179b22b in do_IRQ (regs=0xffffffff81c03df8

<init_thread_union+15864>) at arch/x86/kernel/irq.c:240

which schedules the deferred work:

#1 tty_schedule_flip (port=<optimized out>) at drivers/tty/tty_buffer.c:406
400 struct tty_bufhead *buf = &port->buf;
...
406 queue_work(system_unbound_wq, &buf->work);
(gdb) p *buf->work
$41 = {data = {counter = 64}, entry = {next = 0xffff88003e088010,
prev = 0xffff88003e088010}, func = 0xffffffff814dcd00 <flush_to_ldisc>}

If we put a breakpoint on flush_to_ldisc and step through it, you
eventually get to the following lines:

wait_woken
schedule_timeout
schedule
flush_to_ldisc

2.12. PUTTING IT ALL TOGETHER 35

1628 if (read_cnt(ldata)) {
...

1630 wake_up_interruptible_poll(&tty->read_wait, POLLIN);

which wake up the shell process that was sleeping on tty->read_wait,
by removing it from the queue associated with read_wait and reinserting
it into the list of runnable processes.

Process creation: The shell process executes the ls command by invoking
fork, to create a subprocess, and then invoking wait to wait until the
subprocess has finished. Within the subprocess the exec system call is
used to load and execute the ls program itself; when it is done the exit
system call frees the subprocess and causes the wait in the parent process
to return. (process creation will be covered in more depth when we look
at virtual memory)

Output: The shell and the ls processes send output to the screen by
using the write system call; the text console driver is responsible for
determining where the next character should be placed on the screen,
handling end-of-line, and copying data to scroll displayed text upwards
when it reaches the end of the buffer. (this way both processes can output
to the same screen without over-writing each other)

In particular, tty_write eventually calls do_con_write in
drivers/tty/vt/vt.c, which has a bunch of convoluted logic
to handle line wrap, scrolling, cursor control commands, etc., but for
the simplest case just adds on 8 bits to set the right background and
foreground color, and writes into the screen buffer via a pointer:
#define scr_writew(val, addr) (*(addr) = (val))
...
2384 scr_writew((vc_attr << 8) + tc,

(u16 *) vc->vc_pos);

tty->read_wait
read_wait
tty_write
do_con_write

36 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Answers to Review Questions

2.1.1 yes/no/sort of : “no”. I/O devices are pieces of hardware separate
from the memory and the CPU, e.g., a card that plugs into the PCI
bus. Software, whether part of the operating system or a program,
consists of instructions in memory that are executed by the CPU.

2.1.2 yes/no/sort of : “sort of”. The CPU interacts with most I/O devices
as if they were normal memory locations, using load and store in-
structions to memory addresses. However, unlike normal RAM,
which just stores the value written and returns it when read, the de-
vice takes various actions when the CPU reads or writes its memory
locations.

2.4.1 “yes”. Although programs may occasionally interact directly with
specific pieces of hardware, a primary purpose of the operating
system is to provide simple and consistent interfaces to complex
and varying hardware devices.

2.4.2 “maybe”. Some systems don’t have a display. On a system with
a display, the operating system may manage that display for user
programs, as it does the keyboard (e.g., in Windows). On other
systems (e.g., Linux), a separate program may be responsible for
the interface.

2.4.3 “maybe”. The simplest operating systems support a single, pre-
loaded program, while the whole point of general-purpose operating
systems like Windows or Linux is to allow the user to load their
own programs.

2.4.4 “no”. That’s the whole point of a system call table. The addresses
of functions in a program or the operating system may change if the
code is modified and recompiled, but the system call table remains
constant.

2.7.1 No. Hardware interrupts are external asynchronous events, and can
occur at any point during program execution. (well, almost any
point. It’s possible to disable interrupts while executing code which
can’t be interrupted.)

2.7.2 No. An interrupt tells the CPU that something happened (or one of
several possible somethings, if an interrupt line is shared), but that’s
all. It’s the job of the interrupt handler to figure out what happened
and handle it (hence the name) by e.g. reading in newly available
data.

2.7.3 Sort of. Interrupts can easily be used to perform brief tasks —
examples include buffering a keystroke in response to the keyboard
interrupt, or flashing a cursor in the timer interrupt. Implementing
the equivalent of a full program in interrupt handlers would be

2.12. PUTTING IT ALL TOGETHER 37

horribly complicated, however.
2.8.1 The stack holds: Function arguments, return addresses : yes, they

are pushed onto the stack before calling a function. Global variables
: no, there is only one copy of each global variable, so they are
allocated fixed locations in memory. Local variables : yes, this
way there is a separate copy of each local variable each time a
function is called, even if it is called recursively, and the memory is
automatically freed when the function returns.

2.8.2 the return instruction doesn’t know anything about the correspond-
ing CALL — it just uses the address on the top of the stack. It is
the responsibility of the CALL instruction to put the return address
there, and of the code in the function to make sure that address is
not corrupted.

2.8.3 RET. Process A uses CALL to invoke the switch function, but it is the
RET at the end of switch, after B’s saved stack pointer is restored,
that actually results in resuming execution of B’s code.

2.9.1 1 (share entire memory space) No, in this case each process would
see its variables change unexpectedly as the other processes up-
dated them.

2 (share code, not data) Yes, it might be simpler to give each pro-
cess a separate copy of its program code, but it’s not necessary.
Writable data (and stack) must be separate, however.

3 (cannot share code) No, the CPU is only executing one instruction
at a time, and really doesn’t care what another process might do
sometime in the future after a context switch.

